全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Quasi-reductive (bi)parabolic subalgebras in reductive Lie algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

We say that a finite dimensional Lie algebra is quasi-reductive if it has a linear form whose stabilizer for the coadjoint representation, modulo the center, is a reductive Lie algebra with a center consisting of semisimple elements. Parabolic subalgebras of a semisimple Lie algebra are not always quasi-reductive (except in types A or C by work of Panyushev). The classification of quasi-reductive parabolic subalgebras in the classical case has been recently achieved in unpublished work of Duflo, Khalgui and Torasso. In this paper, we investigate the quasi-reductivity of biparabolic subalgebras of reductive Lie algebras. Biparabolic (or seaweed) subalgebras are the intersection of two parabolic subalgebras whose sum is the total Lie algebra. As a main result, we complete the classification of quasi-reductive parabolic subalgebras of reductive Lie algebras by considering the exceptional cases.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133