全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Formulas for the Connes-Moscovici Hopf algebra

Full-Text   Cite this paper   Add to My Lib

Abstract:

We give explicit formulas for the coproduct and the antipode in the Connes-Moscovici Hopf algebra $\mathcal{H}_{\tmop{CM}}$. To do so, we first restrict ourselves to a sub-Hopf algebra $\mathcal{H}^1_{\tmop{CM}}$ containing the nontrivial elements, namely those for which the coproduct and the antipode are nontrivial. There are two ways to obtain explicit formulas. On one hand, the algebra $\mathcal{H}^1_{\tmop{CM}}$ is isomorphic to the Fa\`a di Bruno Hopf algebra of coordinates on the group of identity-tangent diffeomorphism and computations become easy using substitution automorphisms rather than diffeomorphisms. On the other hand, the algebra $\mathcal{H}^1_{\tmop{CM}}$ is isomorphic to a sub-Hopf algebra of the classical shuffle Hopf algebra which appears naturally in resummation theory, in the framework of formal and analytic conjugacy of vector fields. Using the very simple structure of the shuffle Hopf algebra, we derive once again explicit formulas for the coproduct and the antipode in $\mathcal{H}^1_{\tmop{CM}}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133