|
Mathematics 2008
Mixed volume and an extension of intersection theory of divisorsAbstract: Let K(X) be the collection of all non-zero finite dimensional subspaces of rational functions on an n-dimensional irreducible variety X. For any n-tuple L_1,..., L_n in K(X), we define an intersection index [L_1,..., L_n] as the number of solutions in X of a system of equations f_1 = ... = f_n = 0 where each f_i is a generic function from the space L_i. In counting the solutions, we neglect the solutions x at which all the functions in some space L_i vanish as well as the solutions at which at least one function from some subspace L_i has a pole. The collection K(X) is a commutative semigroup with respect to a natural multiplication. The intersection index [L_1,..., L_n] can be extended to the Grothendieck group of K(X). This gives an extension of the intersection theory of divisors. The extended theory is applicable even to non-complete varieties. We show that this intersection index enjoys all the main properties of the mixed volume of convex bodies. Our paper is inspired by the Bernstein-Kushnirenko theorem from the Newton polytope theory.
|