全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Kernel Inverse Regression for spatial random fields

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we propose a dimension reduction model for spatially dependent variables. Namely, we investigate an extension of the \emph{inverse regression} method under strong mixing condition. This method is based on estimation of the matrix of covariance of the expectation of the explanatory given the dependent variable, called the \emph{inverse regression}. Then, we study, under strong mixing condition, the weak and strong consistency of this estimate, using a kernel estimate of the \emph{inverse regression}. We provide the asymptotic behaviour of this estimate. A spatial predictor based on this dimension reduction approach is also proposed. This latter appears as an alternative to the spatial non-parametric predictor.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133