全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Heat-kernel estimates for random walk among random conductances with heavy tail

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study models of discrete-time, symmetric, $\Z^{d}$-valued random walks in random environments, driven by a field of i.i.d. random nearest-neighbor conductances $\omega_{xy}\in[0,1]$, with polynomial tail near 0 with exponent $\gamma>0$. We first prove for all $d\geq5$ that the return probability shows an anomalous decay (non-Gaussian) that approches (up to sub-polynomial terms) a random constant times $n^{-2}$ when we push the power $\gamma$ to zero. In contrast, we prove that the heat-kernel decay is as close as we want, in a logarithmic sense, to the standard decay $n^{-d/2}$ for large values of the parameter $\gamma$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133