全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Bieri-Neumann-Strebel-Renz invariants and homology jumping loci

DOI: 10.1112/plms/pdp045

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigate the relationship between the geometric Bieri-Neumann-Strebel-Renz invariants of a space (or of a group), and the jump loci for homology with coefficients in rank 1 local systems over a field. We give computable upper bounds for the geometric invariants, in terms of the exponential tangent cones to the jump loci over the complex numbers. Under suitable hypotheses, these bounds can be expressed in terms of simpler data, for instance, the resonance varieties associated to the cohomology ring. These techniques yield information on the homological finiteness properties of free abelian covers of a given space, and of normal subgroups with abelian quotients of a given group. We illustrate our results in a variety of geometric and topological contexts, such as toric complexes and Artin kernels, as well as K\"ahler and quasi-K\"ahler manifolds.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133