全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

On asymptotic dimension and a property of Nagata

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this note we prove that every metric space $(X, d)$ of asymptotic dimmension at most $n$ is coarsely equivalent to a metric space $(Y, D)$ that satisfies the following property of Nagata: For every $n+2$ points $y_1,..., y_{n+2}$ in $Y$ and for every $x$ in $Y$ there exist two different $i,j$ such that $D(y_i,y_j)\le D(x,y_i)$. This solves problem 1400 of the book Open problems in Topology II.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133