全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Asymptotic heat kernel expansion in the semi-classical limit

DOI: 10.1007/s00220-009-0973-3

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $H_h = h^2 L +V$ where $L$ is a self-adjoint Laplace type operator acting on sections of a vector bundle over a compact Riemannian manifold and $V$ is a symmetric endomorphism field. We derive an asymptotic expansion for the heat kernel of $H_h$ as $h \to 0$. As a consequence we get an asymptotic expansion for the quantum partition function and we see that it is asymptotic to the classical partition function. Moreover, we show how to bound the quantum partition function for positive $h$ by the classical partition function.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133