|
Mathematics 2008
The regular algebra of a posetAbstract: Let $K$ be a field. We attach to each finite poset $\mathbb P$ a von Neumann regular $K$-algebra $Q_K(\mathbb P)$ in a functorial way. We show that the monoid of isomorphism classes of finitely generated projective $Q_K(\mathbb P)$-modules is the abelian monoid generated by $\mathbb P$ with the only relations given by $p=p+q$ whenever $q
|