全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Parity-induced Selmer Growth For Symplectic, Ordinary Families

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $p$ be an odd prime, and let $K/K_0$ be a quadratic extension of number fields. Denote by $K_\pm$ the maximal $\mathbb{Z}_p$-power extensions of $K$ that are Galois over $K_0$, with $K_+$ abelian over $K_0$ and $K_-$ dihedral over $K_0$. In this paper we show that for a Galois representation over $K_0$ satisfying certain hypotheses, if it has odd Selmer rank over $K$ then for one of $K_\pm$ its Selmer rank over $L$ is bounded below by $[L:K]$ for $L$ ranging over the finite subextensions of $K$ in $K_\pm$. Our method or proof generalizes a method of Mazur--Rubin, building upon results of Nekov\'a\v{r}, and applies to abelian varieties of arbitrary dimension, (self-dual twists of) modular forms of even weight, and (twisted) Hida families.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133