全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Cesàro means of Jacobi expansions on the parabolic biangle

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study Ces\`aro $(C,\delta)$ means for two-variable Jacobi polynomials on the parabolic biangle $B=\{(x_1,x_2)\in{\mathbb R}^2:0\leq x_1^2\leq x_2\leq 1\}$. Using the product formula derived by Koornwinder & Schwartz for this polynomial system, the Ces\`aro operator can be interpreted as a convolution operator. We then show that the Ces\`aro $(C,\delta)$ means of the orthogonal expansion on the biangle are uniformly bounded if $\delta>\alpha+\beta+1$, $\alpha-\frac 12\geq\beta\geq 0$. Furthermore, for $\delta\geq\alpha+2\beta+\frac 32$ the means define positive linear operators.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133