全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems

DOI: 10.1214/193940307000000518

Full-Text   Cite this paper   Add to My Lib

Abstract:

It has been widely realized that Monte Carlo methods (approximation via a sample ensemble) may fail in large scale systems. This work offers some theoretical insight into this phenomenon in the context of the particle filter. We demonstrate that the maximum of the weights associated with the sample ensemble converges to one as both the sample size and the system dimension tends to infinity. Specifically, under fairly weak assumptions, if the ensemble size grows sub-exponentially in the cube root of the system dimension, the convergence holds for a single update step in state-space models with independent and identically distributed kernels. Further, in an important special case, more refined arguments show (and our simulations suggest) that the convergence to unity occurs unless the ensemble grows super-exponentially in the system dimension. The weight singularity is also established in models with more general multivariate likelihoods, e.g. Gaussian and Cauchy. Although presented in the context of atmospheric data assimilation for numerical weather prediction, our results are generally valid for high-dimensional particle filters.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133