全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Singular value decomposition of large random matrices (for two-way classification of microarrays)

DOI: 10.1016/j.jmva.2009.09.006

Full-Text   Cite this paper   Add to My Lib

Abstract:

Asymptotic behavior of the singular value decomposition (SVD) of blown up matrices and normalized blown up contingency tables exposed to Wigner-noise is investigated.It is proved that such an m\times n matrix almost surely has a constant number of large singular values (of order \sqrt{mn}), while the rest of the singular values are of order \sqrt{m+n} as m,n\to\infty. Concentration results of Alon et al. for the eigenvalues of large symmetric random matrices are adapted to the rectangular case, and on this basis, almost sure results for the singular values as well as for the corresponding isotropic subspaces are proved. An algorithm, applicable to two-way classification of microarrays, is also given that finds the underlying block structure.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133