全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Existence and stability of noncharacteristic boundary-layers for the compressible Navier-Stokes and viscous MHD equations

DOI: 10.1007/s00205-009-0277-y

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a general class of hyperbolic-parabolic systems including the compressible Navier-Stokes and compressible MHD equations, we prove existence and stability of noncharacteristic viscous boundary layers for a variety of boundary conditions including classical Navier-Stokes boundary conditions. Our first main result, using the abstract framework established by the authors in the companion work \cite{GMWZ6}, is to show that existence and stability of arbitrary amplitude exact boundary-layer solutions follow from a uniform spectral stability condition on layer profiles that is expressible in terms of an Evans function (uniform Evans stability). Whenever this condition holds we give a rigorous description of the small viscosity limit as the solution of a hyperbolic problem with "residual" boundary conditions. Our second is to show that uniform Evans stability for small-amplitude layers is equivalent to Evans stability of the limiting constant layer, which in turn can be checked by a linear-algebraic computation. Finally, for a class of symmetric-dissipative systems including the physical examples mentioned above, we carry out energy estimates showing that constant (and thus small-amplitude) layers always satisfy uniform Evans stability. This yields existence of small-amplitude multi-dimensional boundary layers for the compressible Navier-Stokes and MHD equations. For both equations these appear to be the first such results in the compressible case.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133