全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Maximal Solutions of Semilinear Elliptic Equations with Locally Integrable Forcing Term

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the existence of a maximal solution of $-\Gd u+g(u)=f(x)$ in a domain $\Gw\subset \BBR^N$ with compact boundary, assuming that $f\in (L^1_{loc}(\Gw))_+$ and that $g$ is nondecreasing, $g(0)\geq 0$ and $g$ satisfies the Keller-Osserman condition. We show that if the boundary satisfies the classical $C_{1,2}$ Wiener criterion then the maximal solution is a large solution, i.e., it blows up everywhere on the boundary. In addition we discuss the question of uniqueness of large solutions.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133