全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Howe type duality for metaplectic group acting on symplectic spinor valued forms

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\lambda: \tilde{G}\to G$ be the non-trivial double covering of the symplectic group $G=Sp(V,\omega)$ of the symplectic vector space $(V,\omega)$ by the metaplectic group $\tilde{G}=Mp(V,\omega).$ In this case, $\lambda$ is also a representation of $\tilde{G}$ on the vector space $V$ and thus, it gives rise to the representation of $\tilde{G}$ on the space of exterior forms $\bigwedge^{\bullet}V^*$ by taking wedge products. Let $S$ be the minimal globalization of the Harish-Chandra module of the complex Segal-Shale-Weil representation of the metaplectic group $\tilde{G}.$ We prove that the associative commutant algebra $\hbox{End}_{\tilde{G}}(\bigwedge^{\bullet}V^*\otimes S)$ of the metaplectic group $\tilde{G}$ acting on the $S$-valued exterior forms is generated by certain representation of the super ortho-symplectic Lie algebra $osp(1|2)$ and two distinguished operators. This establishes a Howe type duality between the metaplectic group and the super Lie algebra $\mathfrak{osp}(1|2).$ Also the space $\bigwedge^{\bullet}V^*\otimes S$ is decomposed wr. to the joint action of $Mp(V,\omega)$ and $osp(1|2).$

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133