全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Extremality and designs in spaces of quadratic forms

Full-Text   Cite this paper   Add to My Lib

Abstract:

A well known theorem of Voronoi caracterizes extreme quadratic forms and Euclidean lattices, that is those which are local maxima for the Hermite function, as perfect and eutactic. This caracterization has been extended in various cases, such that family of lattices, sections of lattices, Humbert forms, etc. Moreover, there is a criterion for extreme lattices, discovered by Venkov, formulated in terms of spherical designs which has been extended in the case of Grassmannians and sections of lattices. In this article, we define a general frame, in which there is a ``Voronoi characterization'', and a ``Venkov criterion'' through an appropriate notion of design. This frame encompasses many interesting situations in which a ``Voronoi characterization'' has been proved. We also discuss the question of extremality relatively to the Epstein zeta function, and we extend to our frame a characterization of final zeta-extremality formulated by Delone and Ryshkov and a criterion in terms of designs found by Coulangeon.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133