全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

On the asymptotic measure of periodic subsystems of finite type in symbolic dynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\Delta\subsetneq\V$ be a proper subset of the vertices $\V$ of the defining graph of an aperiodic shift of finite type $(\Sigma_{A}^{+},\S)$. Let $\Delta_{n}$ be the union of cylinders in $\Sigma_{A}^{+}$ corresponding to the points $x$ for which the first $n$-symbols of $x$ belong to $\Delta$ and let $\mu$ be an equilibrium state of a H\"older potential $\phi$ on $\Sigma_{A}^{+}$. We know that $\mu(\Delta_{n})$ converges to zero as $n$ diverges. We study the asymptotic behaviour of $\mu(\Delta_{n})$ and compare it with the pressure of the restriction of $\phi$ to $\Sigma_{\Delta}$. The present paper extends some results in \cite{CCC} to the case when $\Sigma_{\Delta}$ is irreducible and periodic. We show an explicit example where the asymptotic behaviour differs from the aperiodic case.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133