全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Stochastic evolution equations in UMD Banach spaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

We discuss existence, uniqueness, and space-time H\"older regularity for solutions of the parabolic stochastic evolution equation dU(t) = (AU(t) + F(t,U(t))) dt + B(t,U(t)) dW_H(t), t\in [0,\Tend], U(0) = u_0, where $A$ generates an analytic $C_0$-semigroup on a UMD Banach space $E$ and $W_H$ is a cylindrical Brownian motion with values in a Hilbert space $H$. We prove that if the mappings $F:[0,T]\times E\to E$ and $B:[0,T]\times E\to \mathscr{L}(H,E)$ satisfy suitable Lipschitz conditions and $u_0$ is $\F_0$-measurable and bounded, then this problem has a unique mild solution, which has trajectories in $C^\l([0,T];\D((-A)^\theta)$ provided $\lambda\ge 0$ and $\theta\ge 0$ satisfy $\l+\theta<\frac12$. Various extensions of this result are given and the results are applied to parabolic stochastic partial differential equations.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133