全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Growth rate for the expected value of a generalized random Fibonacci sequence

DOI: 10.1088/1751-8113/42/8/085005

Full-Text   Cite this paper   Add to My Lib

Abstract:

A random Fibonacci sequence is defined by the relation g_n = | g_{n-1} +/- g_{n-2} |, where the +/- sign is chosen by tossing a balanced coin for each n. We generalize these sequences to the case when the coin is unbalanced (denoting by p the probability of a +), and the recurrence relation is of the form g_n = |\lambda g_{n-1} +/- g_{n-2} |. When \lambda >=2 and 0 < p <= 1, we prove that the expected value of g_n grows exponentially fast. When \lambda = \lambda_k = 2 cos(\pi/k) for some fixed integer k>2, we show that the expected value of g_n grows exponentially fast for p>(2-\lambda_k)/4 and give an algebraic expression for the growth rate. The involved methods extend (and correct) those introduced in a previous paper by the second author.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133