|
Mathematics 2008
Topological Hochschild and cyclic homology for Differential graded categoriesAbstract: We define a topological Hochschild (THH) and cyclic (TC) homology theory for differential graded (dg) categories and construct several non-trivial natural transformations from algebraic K-theory to THH(-). In an intermediate step, we prove that the homotopy theory of dg categories is Quillen equivalent, through a four step zig-zag of Quillen equivalences, to the homotopy theory of Eilenberg-Mac Lane spectral categories. Finally, we show that over the rationals two dg categories are topological equivalent if and only if they are quasi-equivalent.
|