全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

A note on standard systems and ultrafilters

DOI: 10.2178/jsl/1230396749

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $(M,\scott X) \models \ACA$ be such that $P_\scott X$, the collection of all unbounded sets in $\scott X$, admits a definable complete ultrafilter and let $T$ be a theory extending first order arithmetic coded in $\scott X$ such that $M$ thinks $T$ is consistent. We prove that there is an end-extension $N \models T$ of $M$ such that the subsets of $M$ coded in $N$ are precisely those in $\scott X$. As a special case we get that any Scott set with a definable ultrafilter coding a consistent theory $T$ extending first order arithmetic is the standard system of a recursively saturated model of $T$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133