全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

On mutation and Khovanov homology

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is conjectured that the Khovanov homology of a knot is invariant under mutation. In this paper, we review the spanning tree complex for Khovanov homology, and reformulate this conjecture using a matroid obtained from the Tait graph (checkerboard graph) G of a knot diagram K. The spanning trees of G provide a filtration and a spectral sequence that converges to the reduced Khovanov homology of K. We show that the E_2-term of this spectral sequence is a matroid invariant and hence invariant under mutation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133