全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Hyperbolicity of arborescent tangles and arborescent links

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we study the hyperbolicity of arborescent tangles and arborescent links. We will explicitly determine all essential surfaces in arborescent tangle complements with non-negative Euler characteristic, and show that given an arborescent tangle T, the complement X(T) is non-hyperbolic if and only if T is a rational tangle, T=Q_m * T' for some m greater than or equal to 1, or T contains Qn for some n greater than or equal to 2. We use these results to prove a theorem of Bonahon and Seibenmann which says that a large arborescent link L is non-hyperbolic if and only if it contains Q2.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133