全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

On a Dynamical Brauer-Manin Obstruction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let F : X --> X be a morphism of a variety defined over a number field K, let V be a K-subvariety of X, and let O_F(P)= {F^n(P) :n=0,1,2,...} be the orbit of a point P in X(K). We describe a local-global principle for the intersection of V and O_F(P). This principle may be viewed as a dynamical analog of the Brauer-Manin obstruction. We show that the rational points of V(K) are Brauer--Manin unobstructed for power maps on P^2 in two cases: (1) V is a translate of a torus. (2) V is a line and P has a preperiodic coordinate. A key tool in the proofs is the classical Bang-Zsigmondy theorem on primitive divisors in sequences. We also prove analogous local-global results for dynamical systems associated to endomoprhisms of abelian varieties.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133