全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Random subgraphs of the 2D Hamming graph: the supercritical phase

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study random subgraphs of the 2-dimensional Hamming graph H(2,n), which is the Cartesian product of two complete graphs on $n$ vertices. Let $p$ be the edge probability, and write $p=\frac{1+\vep}{2(n-1)}$ for some $\vep\in \R$. In Borgs et al., Random subgraphs of finite graphs: I. The scaling window under the triangle condition, Rand. Struct. Alg. (2005), and in Borgs et al., Random subgraphs of finite graphs: II. The lace expansion and the triangle condition, Ann. Probab. (2005), the size of the largest connected component was estimated precisely for a large class of graphs including H(2,n) for $\vep\leq \Lambda V^{-1/3}$, where $\Lambda > 0$ is a constant and $V=n^2$ denotes the number of vertices in H(2,n). Until now, no matching lower bound on the size in the supercritical regime has been obtained. In this paper we prove that, when $\vep\gg (\log{V})^{1/3} V^{-1/3}$, then the largest connected component has size close to $2\vep V$ with high probability. We thus obtain a law of large numbers for the largest connected component size, and show that the corresponding values of $p$ are supercritical. Barring the factor $(\log{\chs{V}})^{1/3}$, this identifies the size of the largest connected component all the way down to the critical $p$ window.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133