全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Relaxation rate, diffusion approximation and Fick's law for inelastic scattering Boltzmann models

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the linear dissipative Boltzmann equation describing inelastic interactions of particles with a fixed background. For the simplified model of Maxwell molecules first, we give a complete spectral analysis, and deduce from it the optimal rate of exponential convergence to equilibrium. Moreover we show the convergence to the heat equation in the diffusive limit and compute explicitely the diffusivity. Then for the physical model of hard spheres we use a suitable entropy functional for which we prove explicit inequality between the relative entropy and the production of entropy to get exponential convergence to equilibrium with explicit rate. The proof is based on inequalities between the entropy production functional for hard spheres and Maxwell molecules. Mathematical proof of the convergence to some heat equation in the diffusive limit is also given. From the last two points we deduce the first explicit estimates on the diffusive coefficient in the Fick's law for (inelastic hard-spheres) dissipative gases.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133