全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Perturbing singular solutions of the Gelfand problem

Full-Text   Cite this paper   Add to My Lib

Abstract:

he equation $-\Delta u = \lambda e^u$ posed in the unit ball $B \subseteq \R^N$, with homogeneous Dirichlet condition $u|_{\partial B} = 0$, has the singular solution $U=\log\frac1{|x|^2}$ when $\lambda = 2(N-2)$. If $N\ge 4$ we show that under small deformations of the ball there is a singular solution $(u,\lambda)$ close to $(U,2(N-2))$. In dimension $N\ge 11$ it corresponds to the extremal solution -- the one associated to the largest $\lambda$ for which existence holds. In contrast, we prove that if the deformation is sufficiently large then even when $N\ge 10$, the extremal solution remains bounded in many cases.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133