全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

A Generalization of a Result of Hardy and Littlewood

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this note we study the growth of \sum_{m=1}^M\frac1{\|m\alpha\|} as a function of M for different classes of \alpha\in[0,1). Hardy and Littlewood showed that for numbers of bounded type, the sum is \simeq M\log M. We give a very simple proof for it. Further we show the following for generic \alpha. For a non-decreasing function \phi tending to infinity, \limsup_{M\to\infty}\frac1{\phi(\log M)}\bigg[\frac1{M\log M}\sum_{m=1}^M\frac1{\|m\alpha\|}\bigg] is zero or infinity according as \sum\frac1{k\phi(k)} converges or diverges.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133