全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

On dynamical smash product

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the theory of dynamical Yang-Baxter equation, with any Hopf algebra $H$ and a certain $H$-module and $H$-comodule algebra $L$ (base algebra) one associates a monoidal category. Given an algebra $A$ in that category, one can construct an associative algebra $A\rtimes L$, which is a generalization of the ordinary smash product when $A$ is an ordinary $H$-algebra. We study this "dynamical smash product" and its modules induced from one-dimensional representation of the subalgebra $L$. In particular, we construct an analog of the Galois map $A\otimes_{A^H} A\to A\otimes H^*$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133