全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Lowest Weights in Cohomology of Variations of Hodge Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let X be a smooth complex projective variety, let $j:U\into X$ an immersion of a Zariski open subset, and let V be a variation of Hodge structure of weight n over U. Then IH^k(X, j_*V) is known to carry a pure Hodge structure of weight k+n, while H^k(U,V) carries a mixed Hodge structure of weight $\ge k+n$. In this note it is shown that the image of the natural map $IH^k(X,j_*V) \to H^k(U,V)$ is the lowest weight part of this mixed Hodge structure. The proof uses Saito's theory of mixed Hodge modules.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133