全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Harmonic morphisms and hyperelliptic graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study harmonic morphisms of graphs as a natural discrete analogue of holomorphic maps between Riemann surfaces. We formulate a graph-theoretic analogue of the classical Riemann-Hurwitz formula, study the functorial maps on Jacobians and harmonic 1-forms induced by a harmonic morphism, and present a discrete analogue of the canonical map from a Riemann surface to projective space. We also discuss several equivalent formulations of the notion of a hyperelliptic graph, all motivated by the classical theory of Riemann surfaces. As an application of our results, we show that for a 2-edge-connected graph G which is not a cycle, there is at most one involution $\iota$ on G for which the quotient $G/\iota$ is a tree. We also show that the number of spanning trees in a graph G is even if and only if G admits a non-constant harmonic morphism to the graph B_2 consisting of 2 vertices connected by 2 edges. Finally, we use the Riemann-Hurwitz formula and our results on hyperelliptic graphs to classify all hyperelliptic graphs having no Weierstrass points.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133