全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Higher Energies in Kahler Geometry I

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $X\hookrightarrow \cpn $ be a smooth complex projective variety of dimension $n$. Let $\lambda$ be an algebraic one parameter subgroup of $G:=\gc$. Let $ 0\leq l\leq n+1$. We associate to the coefficients $F_{l}(\lambda)$ of the normalized weight of $\lambda$ on the $mth$ Hilbert point of $X$ new energies $F_{\om,l}(\vp)$. The (logarithmic) asymptotics of $F_{\om,l}(\vp)$ along the potential deduced from $\lambda$ is the weight $F_{l}(\lambda)$. $F_{\om,l}(\vp)$ reduces to the Aubin energy when $l=0$ and the K-Energy map of Mabuchi when $l=1$. When $l\geq 2$ $F_{\om,l}(\vp)$ coincides (modulo lower order terms) with the functional $E_{\om,l-1}(\vp)$ introduced by X.X. Chen and G.Tian.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133