全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

A Robertson-type Uncertainty Principle and Quantum Fisher Information

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $A_1,...,A_N$ be complex selfadjoint matrices and let $\rho$ be a density matrix. The Robertson uncertainty principle $$ det (Cov_\rho(A_h,A_j)) \geq det (- \frac{i}{2} Tr (\rho [A_h,A_j])) $$ gives a bound for the quantum generalized covariance in terms of the commutators $ [A_h,A_j]$. The right side matrix is antisymmetric and therefore the bound is trivial (equal to zero) in the odd case $N=2m+1$. Let $f$ be an arbitrary normalized symmetric operator monotone function and let $<\cdot, \cdot >_{\rho,f}$ be the associated quantum Fisher information. In this paper we prove the inequality $$ det (Cov_\rho (A_h,A_j)) \geq det (\frac{f(0)}{2} < i[\rho, A_h],i[\rho,A_j] >_{\rho,f}) $$ that gives a non-trivial bound for any $N \in {\mathbb N}$ using the commutators $[\rho,A_h]$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133