全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Singular Hecke algebras, Markov traces, and HOMFLY-type invariants

Full-Text   Cite this paper   Add to My Lib

Abstract:

We define the singular Hecke algebra ${\mathcal H} (SB_n)$ as the quotient of the singular braid monoid algebra ${\mathbb C} (q) [SB_n]$ by the Hecke relations $\sigma_k^2 = (q-1) \sigma_k +q$, $1 \le k\le n-1$, and define the Markov traces on the sequence $\{{\mathcal H}(SB_n)\}_{n=1}^{+\infty}$ in the same way as for the Markov traces on the tower of (non-singular) Hecke algebras of the symmetric groups. We prove that the Markov traces are in one-to-one correspondance with the invariants that satisfies some skein relation, and compute an explicit classification of the Markov traces. Thanks to this classification, we define some universal HOMFLY-type invariant which has the property that it distinguishes all the pairs of singular links that can be distinguished by an invariant which satisfies the required skein relation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133