全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Tridiagonal pairs of Krawtchouk type

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $K$ denote an algebraically closed field with characteristic 0 and let $V$ denote a vector space over $K$ with finite positive dimension. Let $A,A^*$ denote a tridiagonal pair on $V$ with diameter $d$. We say that $A,A^*$ has Krawtchouk type whenever the sequence $\lbrace d-2i\rbrace_{i=0}^d$ is a standard ordering of the eigenvalues of $A$ and a standard ordering of the eigenvalues of $A^*$. Assume $A,A^*$ has Krawtchouk type. We show that there exists a nondegenerate symmetric bilinear form $< , >$ on $V$ such that $= < u,Av>$ and $= < u,A^*v>$ for $u,v\in V$. We show that the following tridiagonal pairs are isomorphic: (i) $A,A^*$; (ii) $-A,-A^*$; (iii) $A^*,A$; (iv) $-A^*,-A$. We give a number of related results and conjectures.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133