全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Transportation-information inequalities for Markov processes

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, one investigates the following type of transportation-information $T_cI$ inequalities: $\alpha(T_c(\nu,\mu))\le I(\nu|\mu)$ for all probability measures $\nu$ on some metric space $(\XX, d)$, where $\mu$ is a given probability measure, $T_c(\nu,\mu)$ is the transportation cost from $\nu$ to $\mu$ with respect to some cost function $c(x,y)$ on $\XX^2$, $I(\nu|\mu)$ is the Fisher-Donsker-Varadhan information of $\nu$ with respect to $\mu$ and $\alpha: [0,\infty)\to [0,\infty]$ is some left continuous increasing function. Using large deviation techniques, it is shown that $T_cI$ is equivalent to some concentration inequality for the occupation measure of a $\mu$-reversible ergodic Markov process related to $I(\cdot|\mu)$, a counterpart of the characterizations of transportation-entropy inequalities, recently obtained by Gozlan and L\'eonard in the i.i.d. case . Tensorization properties of $T_cI$ are also derived.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133