全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Infinite-dimensional diffusions as limits of random walks on partitions

DOI: 10.1007/s00440-008-0148-8

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present paper originated from our previous study of the problem of harmonic analysis on the infinite symmetric group. This problem leads to a family {P_z} of probability measures, the z-measures, which depend on the complex parameter z. The z-measures live on the Thoma simplex, an infinite-dimensional compact space which is a kind of dual object to the infinite symmetric group. The aim of the paper is to introduce stochastic dynamics related to the z-measures. Namely, we construct a family of diffusion processes in the Toma simplex indexed by the same parameter z. Our diffusions are obtained from certain Markov chains on partitions of natural numbers n in a scaling limit as n goes to infinity. These Markov chains arise in a natural way, due to the approximation of the infinite symmetric group by the increasing chain of the finite symmetric groups. Each z-measure P_z serves as a unique invariant distribution for the corresponding diffusion process, and the process is ergodic with respect to P_z. Moreover, P_z is a symmetrizing measure, so that the process is reversible. We describe the spectrum of its generator and compute the associated (pre)Dirichlet form.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133