全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Poncelet pairs and the Twist Map associated to the Poncelet Billiard

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show that for a fixed curve $K$ and for a family of variables curves $L$, the number of $n$-Poncelet pairs is $\frac{e (n)}{2}$, where $e(n)$ is the number of natural numbers $m$ smaller than $n$ and which satisfies mcd $ (m,n)=1$. The curvee $K$ do not have to be part of the family. In order to show this result we consider an associated billiard transformation and a twist map which preserves area. We use Aubry-Mather theory and the rotation number of invariant curves to obtain our main result. In the last section we estimate the derivative of the rotation number of a general twist map using some properties of the continued fraction expansion .

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133