全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Lattice polytopes having h^*-polynomials with given degree and linear coefficient

DOI: 10.1016/j.ejc.2007.11.002

Full-Text   Cite this paper   Add to My Lib

Abstract:

The h^*-polynomial of a lattice polytope is the numerator of the generating function of the Ehrhart polynomial. Let P be a lattice polytope with h^*-polynomial of degree d and with linear coefficient h^*_1. We show that P has to be a lattice pyramid over a lower-dimensional lattice polytope, if the dimension of P is greater or equal to h^*_1 (2d+1) + 4d-1. This result has a purely combinatorial proof and generalizes a recent theorem of Batyrev.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133