全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Statistics of the Number of Zero Crossings : from Random Polynomials to Diffusion Equation

DOI: 10.1103/PhysRevLett.99.060603

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider a class of real random polynomials, indexed by an integer d, of large degree n and focus on the number of real roots of such random polynomials. The probability that such polynomials have no real root in the interval [0,1] decays as a power law n^{-\theta(d)} where \theta(d)>0 is the exponent associated to the decay of the persistence probability for the diffusion equation with random initial conditions in space dimension d. For n even, the probability that such polynomials have no root on the full real axis decays as n^{-2(\theta(d) + \theta(2))}. For d=1, this connection allows for a physical realization of real random polynomials. We further show that the probability that such polynomials have exactly k real roots in [0,1] has an unusual scaling form given by n^{-\tilde \phi(k/\log n)} where \tilde \phi(x) is a universal large deviation function.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133