全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Packing-Dimension Profiles and Fractional Brownian Motion

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to compute the packing dimension of orthogonal projections Falconer and Howroyd (1997) introduced a family of packing dimension profiles ${\rm Dim}_s$ that are parametrized by real numbers $s>0$. Subsequently, Howroyd (2001) introduced alternate $s$-dimensional packing dimension profiles $\hbox{${\rm P}$-$\dim$}_s$ and proved, among many other things, that $\hbox{${\rm P}$-$\dim$}_s E={\rm Dim}_s E$ for all integers $s>0$ and all analytic sets $E\subseteq\R^N$. The goal of this article is to prove that $\hbox{${\rm P}$-$\dim$}_s E={\rm Dim}_s E$ for all real numbers $s>0$ and analytic sets $E\subseteq\R^N$. This answers a question of Howroyd (2001, p. 159). Our proof hinges on a new property of fractional Brownian motion.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133