全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

On $π- π$ theorem for manifold pairs with boundaries

Full-Text   Cite this paper   Add to My Lib

Abstract:

Surgery obstruction of a normal map to a simple Poincare pair $(X,Y)$ lies in the relative surgery obstruction group $L_*(\pi_1(Y)\to\pi_1(X))$. A well known result of Wall, the so called $\pi$-$\pi$ theorem, states that in higher dimensions a normal map of a manifold with boundary to a simple Poincare pair with $\pi_1(X)\cong\pi_1(Y)$ is normally bordant to a simple homotopy equivalence of pairs. In order to study normal maps to a manifold with a submanifold, Wall introduced surgery obstruction group for manifold pairs $LP_*$ and splitting obstruction groups $LS_*$. In the present paper we formulate and prove for manifold pairs with boundaries the results which are similar to the $\pi$-$\pi$ theorem. We give direct geometric proofs, which are based on the original statements of Wall's results and apply obtained results to investigate surgery on filtered manifolds.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133