全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Local mirror symmetry of curves: Yukawa couplings and genus 1

Full-Text   Cite this paper   Add to My Lib

Abstract:

We continue our study of equivariant local mirror symmetry of curves, i.e. mirror symmetry for X_k=O(k)+O(-2-k) over P^1 with torus action (lambda_1,lambda_2) on the bundle. For the antidiagonal action lambda_1=-lambda_2, we find closed formulas for the mirror map and a rational B model Yukawa coupling for all k. Moreover, we give a simple closed form for the B model genus 1 Gromov-Witten potential. For the diagonal action lambda_1=lambda_2, we argue that the mirror symmetry computation is equivalent to that of the projective bundle P(O+O(k)+O(-2-k)) over P^1. Finally, we outline the computation of equivariant Gromov-Witten invariants for A_n singularities and toric tree examples via mirror symmetry.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133