全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

A special set of exceptional times for dynamical random walk on $\Z^2$

Full-Text   Cite this paper   Add to My Lib

Abstract:

Benjamini,Haggstrom, Peres and Steif introduced the model of dynamical random walk on Z^d. This is a continuum of random walks indexed by a parameter t. They proved that for d=3,4 there almost surely exist t such that the random walk at time t visits the origin infinitely often, but for d > 4 there almost surely do not exist such t. Hoffman showed that for d=2 there almost surely exists t such that the random walk at time t visits the origin only finitely many times. We refine the results of Hoffman for dynamical random walk on Z^2, showing that with probability one there are times when the origin is visited only a finite number of times while other points are visited infinitely often.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133