全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

The homotopy orbit spectrum for profinite groups

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let G be a profinite group. We define an S[[G]]-module to be a G-spectrum X that satisfies certain conditions, and, given an S[[G]]-module X, we define the homotopy orbit spectrum X_{hG}. When G is countably based and X satisfies a certain finiteness condition, we construct a homotopy orbit spectral sequence whose E_2-term is the continuous homology of G with coefficients in the graded profinite $\hat{\mathbb{Z}}[[G]]$-module $\pi_\ast(X)$. Let G_n be the extended Morava stabilizer group and let E_n be the Lubin-Tate spectrum. As an application of our theory, we show that the function spectrum F(E_n,L_{K(n)}(S^0)) is an S[[G_n]]-module with an associated homotopy orbit spectral sequence.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133