全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Characterizing Projective Spaces for Varieties with at Most Quotient Singularities

Full-Text   Cite this paper   Add to My Lib

Abstract:

We generalize the well-known numerical criterion for projective spaces by Cho, Miyaoka and Shepherd-Barron to varieties with at worst quotient singularities. Let $X$ be a normal projective variety of dimension $n \geq 3$ with at most quotient singularities. Our result asserts that if $C \cdot (-K_X) \geq n+1$ for every curve $C \subset X$, then $X \cong \PP^n$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133