全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

On a factorization of second order elliptic operators and applications

DOI: 10.1088/0305-4470/39/40/009

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show that given a nonvanishing particular solution of the equation (divpgrad+q)u=0 (1) the corresponding differential operator can be factorized into a product of two first order operators. The factorization allows us to reduce the equation (1) to a first order equation which in a two-dimensional case is the Vekua equation of a special form. Under quite general conditions on the coefficients p and q we obtain an algorithm which allows us to construct in explicit form the positive formal powers (solutions of the Vekua equation generalizing the usual powers of the variable z). This result means that under quite general conditions one can construct an infinite system of exact solutions of (1) explicitly, and moreover, at least when p and q are real valued this system will be complete in ker(divpgrad+q) in the sense that any solution of (1) in a simply connected domain can be represented as an infinite series of obtained exact solutions which converges uniformly on any compact subset of . Finally we give a similar factorization of the operator (divpgrad+q) in a multidimensional case and obtain a natural generalization of the Vekua equation which is related to second order operators in a similar way as its two-dimensional prototype does.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133