|
Mathematics 2006
A variational approach to the regularity of minimal surfaces of annulus type in Riemannian manifoldsAbstract: Given two Jordan curves in a Riemannian manifold, a minimal surface of annulus type bounded by these curves is described as the harmonic extension of a critical point of some functional (the Dirichlet integral) in a certain space of boundary parametrizations. The $H^{2,2}$-regularity of the minimal surface of annulus type will be proved by applying the critical points theory and Morrey's growth condition.
|