|
Mathematics 2003
Volume minimization for Lagrangian submanifolds in complex manifolds with negative first Chern classAbstract: It is classically known that closed geodesics on a compact Riemann surface with a metric of negative curvature strictly minimize length in their free homotopy class. We'd like to generalize this to Lagrangian submanifolds in K\"ahler manifolds of negative Ricci curvature. The only known result in this direction is a theorem on Y.I. Lee for certain Lagrangian submanifolds in a product of two Riemann surfaces of constant negative curvature. We develop an approach to study this problem in higher dimensions. Along the way we prove some weak results (volume-minimization outside of a divisor) and give a counterexample to global volume-minimization for an immersed minimal Lagrangian submanifold.
|